
FV3 transition to Vlab
and Git

6/12/2017

Mark A. Potts, Ph.D.

Background and roadmap
▶  Made FV3 available (read-only) on Vlab git on May 15, 2017.

▶  Currently 35+ members added to the Vlab project

▶  FV3 Members granted write access to git repo on June 12, 2017.

▶  Introduction to using vlab and git (this briefing) on June 12, 2017.

▶  Invitation to practice using git and learn how to checkout, update, commit, push
and merge.

▶  After a month or so of practice with git, further training on using Gerrit for
code review.

▶  Transition fully to git and Gerrit around the end of July 2017.

▶  Convert svn to read-only at same time as transition to git/Gerrit.

Get added to Vlab and FV3!

▶  Go to https://vlab.ncep.noaa.gov/group/fv3gfs/home and fill out the web
form to get added to the project and repository.

▶  If you have any particular branches from subversion you would like pushed to
the git repo, put your branch in this shared document on the google drive—
https://docs.google.com/a/noaa.gov/document/d/
1mNfwoqmSX_owdFlYqiK_Q5EmBcKCgUSqg51yZT8ezHg/edit?usp=sharing

▶  Any users without noaa.gov email addresses will need to request they be
sponsored for a vlab account (contact me mark.potts@noaa.gov).

Git basics

▶  Git works somewhat differently than subversion (svn)

▶  Clone creates a full copy, including all remote branches, in your local
directory

▶  Changing between branches is all done in the same directory

▶  Untracked files remain

▶  Tracked files are swapped

▶  Commits are first done on the local repo

▶  Local commits to a branch must be pushed to the vlab repo explicitly

Specifics of FV3 Git repo on Vlab

▶  COMFV3 is set up as a superproject that includes submodules containing both NEMS
and FV3 repositories.

▶  https://svnemc.ncep.noaa.gov/projects/apps/NEMSfv3gfs

▶  https://svnemc.ncep.noaa.gov/projects/nems

▶  https://svnemc.ncep.noaa.gov/projects/fv3

▶  To pull all at once

git clone –-recursive https://user.name@vlab.ncep.noaa.gov/git/comfv3

Sample of git clone

Get started with the new repo
▶  Change to the new comfv3 directory and look around

▶  Note that FV3 and NEMS are actually separate repositories in the comfv3 root.

▶  CD to FV3 and check out a branch from the vlab repo

git branch –r

git checkout origin branch-name

Create a new branch

•  Create a new branch starting from master
git checkout –b new-branch

•  Verify the branch you are on
git branch

•  Change a file, check status, and commit change
git status
git commit –a (changed existing file)
git add new-file; git commit

•  Enter commit message

•  Push your local branch up to the vlab server
git push origin local-branch

Delete a branch

▶  To delete a local branch

git branch –D new-branch

▶  To delete a remote branch

git push origin :new-branch

▶  Generally not a good idea if anyone
else may have checked out a copy!

Common issues
▶  Made a bunch of changes, but want to scrap them all and go back to last commit

git reset –-hard HEAD

▶  Made a bunch of changes and committed locally, but want to revert to previous
commit

git checkout master

git branch –D localbranch

git checkout origin localbranch

OR

git reset –-hard <SOME-COMMIT> // this will delete history

git revert <SOME-COMMIT> // this will revert to some commit

git reset --hard HEAD~1 // this will reset to previous commit

Using git log to find commits

▶  Git log will provide a listing of the history of a given branch

git log –-pretty=oneline

Gitk and GitX

Git stash

▶  Sometimes, you want to keep things you have been working on, but
temporarily do something else.

▶  Git stash will put all changes since last commit into “hiding”

▶  Run git stash, then do some other new thing.

▶  To pull changes back, run git stash pop

▶  Can	also	be	used	to	stash	changes	made	on	one	branch	and	then	apply	them	to	
another.	

Git Stash
example

Merging changes

▶  Git tends to be pretty smart about handling merges. Will look for common ancestor and
apply changes one on top of the other.

▶  To prepare for merge of your branch into trunk/master

git checkout your-branch

git merge master

▶  If conflicts arise, use git mergetool –t (vimdiff, kdiff3, etc.) I prefer to do this locally
(mac or linux) using kdiff3

git mergetool –t kdiff3

▶  Once conflicts are settled, commit changes to local branch and push them to vlab.

▶  Now, change to master and merge your updated local branch into master

git checkout master

git merge your-branch

Git merge
example

Kdiff3 as mergetool git mergetool –t kdiff3

Using Redmine

▶  Access via https://vlab.ncep.noaa.gov/redmine

▶  Select the Community FV3 from the drop down menu on the top right

▶  Select Issues tab

▶  Click on on the top right side

▶  Fill out the form and assign to yourself (or someone else on the
project)

▶  Note the reference number for the issue.

▶  Can be linked to git commits

Redmine Sample

Adding reference numbers to commit

Eventually shows up in Vlab

Link to page showing changes made

Gerrit Code Review

Subversion Git

svn checkout https://svn…. git clone https://….

svn update git pull origin branchname (may need git remote update to refresh
upstream info)

svn commit git add; git commit OR git commit –a
git push origin branchname (to push to vlab)

svn merge --dry-run ^/fv3/trunk
svn merge ^/fv3/trunk

From your branch, ‘git merge master’
After conflicts fixed, ’git checkout master’
’git merge yourbranch’ (your branch merged to master locally)
git push prod HEAD:/refs/for/master (your merged branch pushed to
Gerrit for code review/approval)

svn copy https://….trunk https://
…...newbranch

from master, ‘git checkout –b newbranch’
Also, ‘git branch newbranch; git checkout newbranch’

svn stat git status

svn merge –rNEW:OLD git revert oldSHA
git checkout oldSHA
git reset –hard HEAD~1

svn log git log
git log –pretty=oneline
gitk or GitX (Mac)

Conclusion

▶  The final transition to Vlab will not occur until the end of July at the earliest.

▶  We have not turned on Gerrit yet. There will be a further briefing before we
transition to the code review section of Vlab.

▶  Please try out git and start becoming familiar with it.

▶  Feel free to push new branches to vlab and modify/merge/delete them as you
wish (master branch excepted).

▶  Note that if you are sharing work on a branch, deleting it on vlab can cause issues
with collaboration.

▶  If you run into problems, feel free to contact me (mark.potts@noaa.gov) and I
will help you work through them.

